need to do test then we done
This commit is contained in:
parent
7d9454b288
commit
b723f0f6b4
4 changed files with 93 additions and 49 deletions
|
@ -1,6 +1,6 @@
|
||||||
from torch.utils.data import Dataset
|
from torch.utils.data import Dataset
|
||||||
class DogCatDataset(Dataset):
|
class DogCatDataset(Dataset):
|
||||||
def __init__(self, ds, dog=[5], cat = [3]):
|
def __init__(self, ds:Dataset, dog=[5], cat = [3]):
|
||||||
self.ds = ds
|
self.ds = ds
|
||||||
self.idx = []
|
self.idx = []
|
||||||
for i in range(len(ds)):
|
for i in range(len(ds)):
|
||||||
|
|
52
model.py
52
model.py
|
@ -5,50 +5,36 @@ class DogCatClassifier(nn.Module):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
# 3 color (RGB) image, so tensor is of shape (B x 3 x H X W)
|
# 3 color (RGB) image, so tensor is of shape (B x 3 x H X W)
|
||||||
self.conv1 = nn.Sequential(
|
# if we take a look, we can see that the images are of size 32 * 32 if we look at them in a file explorer, so our H and W are 32 in this case
|
||||||
nn.Conv2d(3, 32, 3, padding = 1), # passes conv kernel over batch and increases num channels from 3 (for RBG) to 32
|
self.conv1 = nn.Conv2d(3, 32, 3, padding = 1) # passes conv kernel over batch and increases num channels from 3 (for RBG) to 32
|
||||||
nn.ReLU(inplace = True), # relu to add nonlinearity
|
self.relu = nn.ReLU(inplace = True) # relu to add nonlinearity
|
||||||
nn.MaxPool2d(2), # reduces h and w of img by a factor of 2
|
self.mp = nn.MaxPool2d(2) # reduces h and w of img by a factor of 2
|
||||||
nn.BatchNorm2d(32) #normalizes over z distribution https://arxiv.org/abs/1502.03167
|
self.bn1 = nn.BatchNorm2d(32) #normalizes over z distribution https://arxiv.org/abs/1502.03167
|
||||||
)
|
|
||||||
|
|
||||||
# tensor size is now (B x 32 x h/2 x w/2)
|
# tensor size is now (B x 32 x 32/2 = 16 x 32/2 = 16)
|
||||||
|
|
||||||
self.conv2 = nn.Sequential(
|
self.conv2 = nn.Conv2d(32, 64, 3, padding = 1) # 32 channels to 64 ch with 3x3 kernel
|
||||||
nn.Conv2d(32, 64, 3, padding = 1), # 32 channels to 64 ch with 3x3 kernel
|
self.bn2 = nn.BatchNorm2d(64) #normalizes over z distribution https://arxiv.org/abs/1502.03167
|
||||||
nn.ReLU(inplace = True),
|
|
||||||
nn.MaxPool2d(2), # reduces # reduces h and w of img by a factor of 2
|
|
||||||
nn.BatchNorm2d(64) #normalizes over z distribution https://arxiv.org/abs/1502.03167
|
|
||||||
)
|
|
||||||
|
|
||||||
# tensor size is now (B x 64 x h/4 x w/4)
|
# tensor size is now (B x 64 x 32/4 = 8 x 32/4 = 8)
|
||||||
|
|
||||||
self.conv3 = nn.Sequential(
|
self.conv3 = nn.Conv2d(64, 128, 3, padding = 1) # 64 channels to 128 ch with 3x3 kernelnn
|
||||||
nn.Conv2d(64, 128, 3, padding = 1), # 64 channels to 128 ch with 3x3 kernel
|
self.bn3= nn.BatchNorm2d(128) # normalizes over z distribution https://arxiv.org/abs/1502.03167
|
||||||
nn.ReLU(inplace = True),
|
|
||||||
nn.MaxPool2d(2), # reduces # reduces h and w of img by a factor of 2
|
|
||||||
nn.BatchNorm2d(128) # normalizes over z distribution https://arxiv.org/abs/1502.03167
|
|
||||||
)
|
|
||||||
|
|
||||||
# tensor size is now (B x 128 x h/8 x w/8)
|
# tensor size is now (B x 128 x 32/8 = 4 x 32/8 = 4)
|
||||||
|
# basically, we have B batches, 128 channels, and a 4x4 pixel representation of our initial image
|
||||||
self.fc1 = nn.Linear(128 * 4 * 4 , 512)# 2048, lowkey had to calculator it lol
|
self.fc1 = nn.Linear(128 * 4 * 4 , 512)# 2048 feats (ch x h x w), lowkey had to calculator it lol
|
||||||
self.dropout = 0.5 # tunable, removes half of the values and replaces them with 0s
|
self.dropout = 0.5 # tunable, removes half of the values and replaces them with 0s
|
||||||
self.fc2 = nn.Linear(512, 1) # 512 ch to 1 ch output
|
self.fc2 = nn.Linear(512, 1) # 512 feats to 1 scalar output
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
x = self.conv1(x)
|
x = self.bn1(self.mp(self.relu(self.conv1(x))))
|
||||||
x = self.conv2(x)
|
x = self.bn2(self.mp(self.relu(self.conv2(x))))
|
||||||
x = self.conv3(x)
|
x = self.bn3(self.mp(self.relu(self.conv3(x))))
|
||||||
x = x.view(x.size(0), -1)
|
x = x.view(x.size(0), -1) # see model_ez for why we do this before linear layers
|
||||||
# reformats for use in linear layer
|
# reformats for use in linear layer
|
||||||
x = self.fc1(x)
|
x = self.fc1(x)
|
||||||
x = nn.functional.relu(x) # relu to add nonlinearity
|
x = nn.functional.relu(x) # relu to add nonlinearity
|
||||||
x = self.fc2(x)
|
x = self.fc2(x)
|
||||||
x = nn.functional.sigmoid(x) # 1 / 1 + e ^(-x)
|
x = nn.functional.sigmoid(x) # 1 / 1 + e ^(-x)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
23
test.py
23
test.py
|
@ -5,11 +5,31 @@ from dogs_cats_ds import DogCatDataset
|
||||||
from model import DogCatClassifier
|
from model import DogCatClassifier
|
||||||
from consts import TEST_DATA
|
from consts import TEST_DATA
|
||||||
|
|
||||||
def test(model: nn.Module, test_loader: DataLoader, criterion, device):
|
|
||||||
|
def test(model: nn.Module, test_images: torch.Tensor, test_labels: torch.Tensor, criterion):
|
||||||
model.eval()
|
model.eval()
|
||||||
test_loss = 0
|
test_loss = 0
|
||||||
correct = 0
|
correct = 0
|
||||||
total = 0
|
total = 0
|
||||||
|
with torch.no_grad():
|
||||||
|
for img in test_images:
|
||||||
|
for label in test_labels:
|
||||||
|
out = model(img)
|
||||||
|
loss = criterion(label)
|
||||||
|
test_loss += loss.item()
|
||||||
|
pred = (out <= 0.5).float()
|
||||||
|
total += label.size(0)
|
||||||
|
correct += (pred == lab).sum().item()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def test(model: nn.Module, test_loader: DataLoader, criterion, device):
|
||||||
|
model.eval() # this mode will disable the backward funcitonality for all tensors, and only perform the fwd pass
|
||||||
|
test_loss = 0
|
||||||
|
correct = 0
|
||||||
|
total = 0
|
||||||
with torch.no_grad(): # do not update gradients
|
with torch.no_grad(): # do not update gradients
|
||||||
for img, lab in test_loader:
|
for img, lab in test_loader:
|
||||||
img, lab = img.to(device), lab.to(device).float().view(-1, 1) # similar to how we did it in train, offset both to a gpu for better perf
|
img, lab = img.to(device), lab.to(device).float().view(-1, 1) # similar to how we did it in train, offset both to a gpu for better perf
|
||||||
|
@ -32,5 +52,6 @@ if __name__ == "__main__":
|
||||||
model = DogCatClassifier()
|
model = DogCatClassifier()
|
||||||
criterion = nn.BCELoss()
|
criterion = nn.BCELoss()
|
||||||
model.load_state_dict(torch.load('dog_cat_classifier.pth', map_location = device, weights_only = True)) # loads what we trained in train.py
|
model.load_state_dict(torch.load('dog_cat_classifier.pth', map_location = device, weights_only = True)) # loads what we trained in train.py
|
||||||
|
print(model)
|
||||||
test(model, dog_test_loader, criterion, device)
|
test(model, dog_test_loader, criterion, device)
|
||||||
|
|
||||||
|
|
63
train.py
63
train.py
|
@ -2,11 +2,37 @@ import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.optim as optim
|
import torch.optim as optim
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
|
from torch.utils.data.dataset import Dataset
|
||||||
from consts import TRAIN_DATA
|
from consts import TRAIN_DATA
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from model import DogCatClassifier
|
from model import DogCatClassifier
|
||||||
from dogs_cats_ds import DogCatDataset
|
from dogs_cats_ds import DogCatDataset
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# def train_sgd(model: nn.Module,
|
||||||
|
# imgs: torch.Tensor,
|
||||||
|
# labels: torch.Tensor,
|
||||||
|
# batch_size: int,
|
||||||
|
# criterion: nn.Module,
|
||||||
|
# optimizer: optim.Optimizer):
|
||||||
|
# losses: list = []
|
||||||
|
# shuffle: torch.Tensor = torch.randperm(imgs.size(0))
|
||||||
|
# images_shuffled: torch.Tensor = imgs[shuffle]
|
||||||
|
# labels_shuffled: torch.Tensor = labels[shuffle]
|
||||||
|
# for i in range(0, imgs.size(0), batch_size):
|
||||||
|
# batched_images: torch.Tensor = images_shuffled[i:i+batch_size]
|
||||||
|
# batched_labels: torch.Tensor = labels_shuffled[i:i+batch_size]
|
||||||
|
# outputs = model(batched_images)
|
||||||
|
# loss = criterion(outputs, batched_labels)
|
||||||
|
# loss.backward()
|
||||||
|
# optimizer.step()
|
||||||
|
#
|
||||||
|
# losses.append(loss.item())
|
||||||
|
# return losses
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def train(model: nn.Module, train_loader: DataLoader, criterion, optimizer, device, epochs):
|
def train(model: nn.Module, train_loader: DataLoader, criterion, optimizer, device, epochs):
|
||||||
model.to(device) # send to gpu if there is one, otherwise toss it over to cpu
|
model.to(device) # send to gpu if there is one, otherwise toss it over to cpu
|
||||||
model.train() #train mode means that all gradients are active and modifiable
|
model.train() #train mode means that all gradients are active and modifiable
|
||||||
|
@ -19,18 +45,27 @@ def train(model: nn.Module, train_loader: DataLoader, criterion, optimizer, devi
|
||||||
img, lab = img.to(device), lab.to(device).float().view(-1, 1) # send the image and label to the gpu if there is one else send to cpu, .view(-1, 1) returns the same tensor data but with the shape of the last dimension
|
img, lab = img.to(device), lab.to(device).float().view(-1, 1) # send the image and label to the gpu if there is one else send to cpu, .view(-1, 1) returns the same tensor data but with the shape of the last dimension
|
||||||
optimizer.zero_grad() # resets gradients to zero when we initialize.
|
optimizer.zero_grad() # resets gradients to zero when we initialize.
|
||||||
|
|
||||||
out = model(img) # outputs are the results of our model on the image (sigmoid)
|
# get a prediction here
|
||||||
loss = criterion(out, lab) # loss is difference between expected and real label from prediction
|
#
|
||||||
loss.backward() # backprop using autograd
|
# calculate the loss here
|
||||||
|
|
||||||
|
# perform backpropogation here
|
||||||
|
|
||||||
|
|
||||||
|
#
|
||||||
optimizer.step() # update optimizer
|
optimizer.step() # update optimizer
|
||||||
|
|
||||||
running_loss += loss.item() # loss in epoch updated with loss
|
running_loss += loss.item() # loss in epoch updated with loss
|
||||||
pred = (out > 0.5).float() # prediction is 0 if less than 0.5 else 1
|
#calculate accuracy
|
||||||
total += lab.size(0) #total samples is increased by the 0th dim of the tensor(batch size)
|
|
||||||
correct += (pred == lab).sum().item() # only add 1 to the correct count if the actual label (dog) = the predicted label(dog)
|
|
||||||
|
|
||||||
if (i + 1) % 50:
|
|
||||||
print(f'yo its epoch {epoch + 1} out of {epochs} and we on minibatch {i + 1} / {len(train_loader)}. Loss lookin like: {running_loss/100:.4f}, acc lookin like {100 * correct / total :.2f}%')
|
#hint: what kind of values is the accuracy outputing? What kind of values do we want?
|
||||||
|
|
||||||
|
total += lab.size(0) #total samples is increased by the 0th dim of the tensor(batch size)
|
||||||
|
# only add 1 to the correct count if the actual label (dog) = the predicted label(dog)
|
||||||
|
|
||||||
|
if (i + 1) % 50 == 0:
|
||||||
|
print(f'yo its epoch {epoch + 1} out of {epochs} and we on minibatch {i + 1} / {len(train_loader)}. Loss lookin like: {running_loss/(i+1):.4f}, acc lookin like {100 * correct / total :.2f}%')
|
||||||
running_loss = 0.0
|
running_loss = 0.0
|
||||||
total = 0
|
total = 0
|
||||||
correct = 0
|
correct = 0
|
||||||
|
@ -39,14 +74,16 @@ def train(model: nn.Module, train_loader: DataLoader, criterion, optimizer, devi
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
print(f'Using device: {device}')
|
print(f'Using device: {device}')
|
||||||
|
|
||||||
dog_train_dataset = DogCatDataset(TRAIN_DATA)
|
dog_train_dataset = DogCatDataset(TRAIN_DATA)
|
||||||
dog_train_loader = DataLoader(dog_train_dataset, batch_size = 32, shuffle = True) # since its train, ok to shuffle
|
dog_train_loader = DataLoader(dog_train_dataset, batch_size = 32, shuffle = True) # since its train, ok to shuffle
|
||||||
model = DogCatClassifier()
|
|
||||||
criterion = nn.BCELoss()
|
model = DogCatClassifier() # black box for now
|
||||||
optimizer = optim.Adam(model.parameters(), lr = 0.001)
|
criterion = nn.BCELoss() # cross entropy loss, feel free to experiment with others
|
||||||
print(model)
|
optimizer = optim.Adam(model.parameters(), lr = 0.001) # feel free to mess around with other optimizers as well
|
||||||
|
|
||||||
train(model = model, train_loader = dog_train_loader, criterion = criterion, optimizer = optimizer, device = device, epochs = 10)
|
train(model = model, train_loader = dog_train_loader, criterion = criterion, optimizer = optimizer, device = device, epochs = 10)
|
||||||
torch.save(model.state_dict(), 'dog_cat_classifier.pth') # saves model to pth file
|
torch.save(model.state_dict(), 'dog_cat_classifier.pth') # saves model to pth file, which can be read by pytorch
|
||||||
print('done w train, model saved')
|
print('done w train, model saved')
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Add table
Reference in a new issue