more documentation

This commit is contained in:
Artem 2025-03-26 15:39:22 -04:00
parent c72a00dc0d
commit 7d9454b288
3 changed files with 46 additions and 40 deletions

View file

@ -4,40 +4,48 @@ class DogCatClassifier(nn.Module):
def __init__ (self):
super().__init__()
# 3 color (RGB) image, so tensor is of shape (B x 3 x H X W)
self.conv1 = nn.Sequential(
nn.Conv2d(3, 32, 3, padding = 1),
nn.ReLU(inplace = True),
nn.MaxPool2d(2),
nn.BatchNorm2d(32)
nn.Conv2d(3, 32, 3, padding = 1), # passes conv kernel over batch and increases num channels from 3 (for RBG) to 32
nn.ReLU(inplace = True), # relu to add nonlinearity
nn.MaxPool2d(2), # reduces h and w of img by a factor of 2
nn.BatchNorm2d(32) #normalizes over z distribution https://arxiv.org/abs/1502.03167
)
# tensor size is now (B x 32 x h/2 x w/2)
self.conv2 = nn.Sequential(
nn.Conv2d(32, 64, 3, padding = 1),
nn.Conv2d(32, 64, 3, padding = 1), # 32 channels to 64 ch with 3x3 kernel
nn.ReLU(inplace = True),
nn.MaxPool2d(2),
nn.BatchNorm2d(64)
nn.MaxPool2d(2), # reduces # reduces h and w of img by a factor of 2
nn.BatchNorm2d(64) #normalizes over z distribution https://arxiv.org/abs/1502.03167
)
# tensor size is now (B x 64 x h/4 x w/4)
self.conv3 = nn.Sequential(
nn.Conv2d(64, 128, 3, padding = 1),
nn.Conv2d(64, 128, 3, padding = 1), # 64 channels to 128 ch with 3x3 kernel
nn.ReLU(inplace = True),
nn.MaxPool2d(2),
nn.BatchNorm2d(128)
nn.MaxPool2d(2), # reduces # reduces h and w of img by a factor of 2
nn.BatchNorm2d(128) # normalizes over z distribution https://arxiv.org/abs/1502.03167
)
# tensor size is now (B x 128 x h/8 x w/8)
self.fc1 = nn.Linear(128 * 4 * 4 , 512)# 2048, lowkey had to calculator it lol
self.dropout = 0.5 # tunable
self.fc2 = nn.Linear(512, 1)
self.dropout = 0.5 # tunable, removes half of the values and replaces them with 0s
self.fc2 = nn.Linear(512, 1) # 512 ch to 1 ch output
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = x.view(x.size(0), -1)
# reformats for use in linear layer
x = self.fc1(x)
x = nn.functional.relu(x)
x = nn.functional.relu(x) # relu to add nonlinearity
x = self.fc2(x)
x = nn.functional.sigmoid(x)
x = nn.functional.sigmoid(x) # 1 / 1 + e ^(-x)
return x

16
test.py
View file

@ -4,23 +4,21 @@ from torch.utils.data import DataLoader
from dogs_cats_ds import DogCatDataset
from model import DogCatClassifier
from consts import TEST_DATA
import torch.optim as optim
def test(model: nn.Module, test_loader: DataLoader, criterion, device):
model.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
with torch.no_grad(): # do not update gradients
for img, lab in test_loader:
img, lab = img.to(device), lab.to(device).float().view(-1, 1)
img, lab = img.to(device), lab.to(device).float().view(-1, 1) # similar to how we did it in train, offset both to a gpu for better perf
out = model(img)
loss = criterion(out, lab)
loss = criterion(out, lab) # evaluate loss
test_loss += loss.item()
pred = (out > 0.5).float()
total += lab.size(0)
correct += (pred == lab).sum().item()
pred = (out > 0.5).float() #same as with train, if its < 0.5 return 0 else 1
total += lab.size(0) # total is increased by batch size
correct += (pred == lab).sum().item() # correct only += 1 if the prediction matches the label
print(f'test loss: {test_loss / len(test_loader):.4f}, test_acc: {100*correct/total:.2f}%')
model.train()
@ -33,6 +31,6 @@ if __name__ == "__main__":
dog_test_loader = DataLoader(dog_test_dataset, batch_size = 32, shuffle = False) # since its test, bad to shuffle
model = DogCatClassifier()
criterion = nn.BCELoss()
model.load_state_dict(torch.load('dog_cat_classifier.pth', map_location = device, weights_only = True))
model.load_state_dict(torch.load('dog_cat_classifier.pth', map_location = device, weights_only = True)) # loads what we trained in train.py
test(model, dog_test_loader, criterion, device)

View file

@ -1,33 +1,33 @@
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torch.utils.data import DataLoader
from consts import TRAIN_DATA
from tqdm import tqdm
from model import DogCatClassifier
from dogs_cats_ds import DogCatDataset
def train(model: nn.Module, train_loader: DataLoader, criterion, optimizer, device, epochs):
model.to(device)
model.train()
model.to(device) # send to gpu if there is one, otherwise toss it over to cpu
model.train() #train mode means that all gradients are active and modifiable
for epoch in tqdm(range(epochs)):
running_loss = 0.0
for epoch in tqdm(range(epochs)): # wrapper around for loop to add a nice progress bar
running_loss = 0.0 # start the loss, amount of cats and dogs we guess correctly, and complete samples at 0 (float 0 in case of loss since it can be a float)
correct = 0
total = 0
for i, (img, lab) in enumerate(train_loader):
img, lab = img.to(device), lab.to(device).float().view(-1, 1)
optimizer.zero_grad()
for i, (img, lab) in enumerate(train_loader): # for each image, label pair in the dataset
img, lab = img.to(device), lab.to(device).float().view(-1, 1) # send the image and label to the gpu if there is one else send to cpu, .view(-1, 1) returns the same tensor data but with the shape of the last dimension
optimizer.zero_grad() # resets gradients to zero when we initialize.
out = model(img)
loss = criterion(out, lab)
loss.backward()
optimizer.step()
out = model(img) # outputs are the results of our model on the image (sigmoid)
loss = criterion(out, lab) # loss is difference between expected and real label from prediction
loss.backward() # backprop using autograd
optimizer.step() # update optimizer
running_loss += loss.item()
pred = (out > 0.5).float()
total += lab.size(0)
correct += (pred == lab).sum().item()
running_loss += loss.item() # loss in epoch updated with loss
pred = (out > 0.5).float() # prediction is 0 if less than 0.5 else 1
total += lab.size(0) #total samples is increased by the 0th dim of the tensor(batch size)
correct += (pred == lab).sum().item() # only add 1 to the correct count if the actual label (dog) = the predicted label(dog)
if (i + 1) % 50:
print(f'yo its epoch {epoch + 1} out of {epochs} and we on minibatch {i + 1} / {len(train_loader)}. Loss lookin like: {running_loss/100:.4f}, acc lookin like {100 * correct / total :.2f}%')
@ -47,6 +47,6 @@ if __name__ == "__main__":
print(model)
train(model = model, train_loader = dog_train_loader, criterion = criterion, optimizer = optimizer, device = device, epochs = 10)
torch.save(model.state_dict(), 'dog_cat_classifier.pth')
torch.save(model.state_dict(), 'dog_cat_classifier.pth') # saves model to pth file
print('done w train, model saved')