more documentation
This commit is contained in:
parent
c72a00dc0d
commit
7d9454b288
3 changed files with 46 additions and 40 deletions
36
model.py
36
model.py
|
@ -4,40 +4,48 @@ class DogCatClassifier(nn.Module):
|
|||
def __init__ (self):
|
||||
super().__init__()
|
||||
|
||||
# 3 color (RGB) image, so tensor is of shape (B x 3 x H X W)
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.Conv2d(3, 32, 3, padding = 1),
|
||||
nn.ReLU(inplace = True),
|
||||
nn.MaxPool2d(2),
|
||||
nn.BatchNorm2d(32)
|
||||
nn.Conv2d(3, 32, 3, padding = 1), # passes conv kernel over batch and increases num channels from 3 (for RBG) to 32
|
||||
nn.ReLU(inplace = True), # relu to add nonlinearity
|
||||
nn.MaxPool2d(2), # reduces h and w of img by a factor of 2
|
||||
nn.BatchNorm2d(32) #normalizes over z distribution https://arxiv.org/abs/1502.03167
|
||||
)
|
||||
|
||||
# tensor size is now (B x 32 x h/2 x w/2)
|
||||
|
||||
self.conv2 = nn.Sequential(
|
||||
nn.Conv2d(32, 64, 3, padding = 1),
|
||||
nn.Conv2d(32, 64, 3, padding = 1), # 32 channels to 64 ch with 3x3 kernel
|
||||
nn.ReLU(inplace = True),
|
||||
nn.MaxPool2d(2),
|
||||
nn.BatchNorm2d(64)
|
||||
nn.MaxPool2d(2), # reduces # reduces h and w of img by a factor of 2
|
||||
nn.BatchNorm2d(64) #normalizes over z distribution https://arxiv.org/abs/1502.03167
|
||||
)
|
||||
|
||||
# tensor size is now (B x 64 x h/4 x w/4)
|
||||
|
||||
self.conv3 = nn.Sequential(
|
||||
nn.Conv2d(64, 128, 3, padding = 1),
|
||||
nn.Conv2d(64, 128, 3, padding = 1), # 64 channels to 128 ch with 3x3 kernel
|
||||
nn.ReLU(inplace = True),
|
||||
nn.MaxPool2d(2),
|
||||
nn.BatchNorm2d(128)
|
||||
nn.MaxPool2d(2), # reduces # reduces h and w of img by a factor of 2
|
||||
nn.BatchNorm2d(128) # normalizes over z distribution https://arxiv.org/abs/1502.03167
|
||||
)
|
||||
|
||||
# tensor size is now (B x 128 x h/8 x w/8)
|
||||
|
||||
self.fc1 = nn.Linear(128 * 4 * 4 , 512)# 2048, lowkey had to calculator it lol
|
||||
self.dropout = 0.5 # tunable
|
||||
self.fc2 = nn.Linear(512, 1)
|
||||
self.dropout = 0.5 # tunable, removes half of the values and replaces them with 0s
|
||||
self.fc2 = nn.Linear(512, 1) # 512 ch to 1 ch output
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.conv2(x)
|
||||
x = self.conv3(x)
|
||||
x = x.view(x.size(0), -1)
|
||||
# reformats for use in linear layer
|
||||
x = self.fc1(x)
|
||||
x = nn.functional.relu(x)
|
||||
x = nn.functional.relu(x) # relu to add nonlinearity
|
||||
x = self.fc2(x)
|
||||
x = nn.functional.sigmoid(x)
|
||||
x = nn.functional.sigmoid(x) # 1 / 1 + e ^(-x)
|
||||
return x
|
||||
|
||||
|
||||
|
|
16
test.py
16
test.py
|
@ -4,23 +4,21 @@ from torch.utils.data import DataLoader
|
|||
from dogs_cats_ds import DogCatDataset
|
||||
from model import DogCatClassifier
|
||||
from consts import TEST_DATA
|
||||
import torch.optim as optim
|
||||
|
||||
def test(model: nn.Module, test_loader: DataLoader, criterion, device):
|
||||
model.eval()
|
||||
test_loss = 0
|
||||
correct = 0
|
||||
total = 0
|
||||
with torch.no_grad():
|
||||
with torch.no_grad(): # do not update gradients
|
||||
for img, lab in test_loader:
|
||||
img, lab = img.to(device), lab.to(device).float().view(-1, 1)
|
||||
img, lab = img.to(device), lab.to(device).float().view(-1, 1) # similar to how we did it in train, offset both to a gpu for better perf
|
||||
out = model(img)
|
||||
loss = criterion(out, lab)
|
||||
loss = criterion(out, lab) # evaluate loss
|
||||
test_loss += loss.item()
|
||||
pred = (out > 0.5).float()
|
||||
total += lab.size(0)
|
||||
correct += (pred == lab).sum().item()
|
||||
|
||||
pred = (out > 0.5).float() #same as with train, if its < 0.5 return 0 else 1
|
||||
total += lab.size(0) # total is increased by batch size
|
||||
correct += (pred == lab).sum().item() # correct only += 1 if the prediction matches the label
|
||||
print(f'test loss: {test_loss / len(test_loader):.4f}, test_acc: {100*correct/total:.2f}%')
|
||||
model.train()
|
||||
|
||||
|
@ -33,6 +31,6 @@ if __name__ == "__main__":
|
|||
dog_test_loader = DataLoader(dog_test_dataset, batch_size = 32, shuffle = False) # since its test, bad to shuffle
|
||||
model = DogCatClassifier()
|
||||
criterion = nn.BCELoss()
|
||||
model.load_state_dict(torch.load('dog_cat_classifier.pth', map_location = device, weights_only = True))
|
||||
model.load_state_dict(torch.load('dog_cat_classifier.pth', map_location = device, weights_only = True)) # loads what we trained in train.py
|
||||
test(model, dog_test_loader, criterion, device)
|
||||
|
||||
|
|
34
train.py
34
train.py
|
@ -1,33 +1,33 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
from torch.utils.data import DataLoader
|
||||
from consts import TRAIN_DATA
|
||||
from tqdm import tqdm
|
||||
from model import DogCatClassifier
|
||||
from dogs_cats_ds import DogCatDataset
|
||||
|
||||
def train(model: nn.Module, train_loader: DataLoader, criterion, optimizer, device, epochs):
|
||||
model.to(device)
|
||||
model.train()
|
||||
model.to(device) # send to gpu if there is one, otherwise toss it over to cpu
|
||||
model.train() #train mode means that all gradients are active and modifiable
|
||||
|
||||
for epoch in tqdm(range(epochs)):
|
||||
running_loss = 0.0
|
||||
for epoch in tqdm(range(epochs)): # wrapper around for loop to add a nice progress bar
|
||||
running_loss = 0.0 # start the loss, amount of cats and dogs we guess correctly, and complete samples at 0 (float 0 in case of loss since it can be a float)
|
||||
correct = 0
|
||||
total = 0
|
||||
for i, (img, lab) in enumerate(train_loader):
|
||||
img, lab = img.to(device), lab.to(device).float().view(-1, 1)
|
||||
optimizer.zero_grad()
|
||||
for i, (img, lab) in enumerate(train_loader): # for each image, label pair in the dataset
|
||||
img, lab = img.to(device), lab.to(device).float().view(-1, 1) # send the image and label to the gpu if there is one else send to cpu, .view(-1, 1) returns the same tensor data but with the shape of the last dimension
|
||||
optimizer.zero_grad() # resets gradients to zero when we initialize.
|
||||
|
||||
out = model(img)
|
||||
loss = criterion(out, lab)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
out = model(img) # outputs are the results of our model on the image (sigmoid)
|
||||
loss = criterion(out, lab) # loss is difference between expected and real label from prediction
|
||||
loss.backward() # backprop using autograd
|
||||
optimizer.step() # update optimizer
|
||||
|
||||
running_loss += loss.item()
|
||||
pred = (out > 0.5).float()
|
||||
total += lab.size(0)
|
||||
correct += (pred == lab).sum().item()
|
||||
running_loss += loss.item() # loss in epoch updated with loss
|
||||
pred = (out > 0.5).float() # prediction is 0 if less than 0.5 else 1
|
||||
total += lab.size(0) #total samples is increased by the 0th dim of the tensor(batch size)
|
||||
correct += (pred == lab).sum().item() # only add 1 to the correct count if the actual label (dog) = the predicted label(dog)
|
||||
|
||||
if (i + 1) % 50:
|
||||
print(f'yo its epoch {epoch + 1} out of {epochs} and we on minibatch {i + 1} / {len(train_loader)}. Loss lookin like: {running_loss/100:.4f}, acc lookin like {100 * correct / total :.2f}%')
|
||||
|
@ -47,6 +47,6 @@ if __name__ == "__main__":
|
|||
print(model)
|
||||
|
||||
train(model = model, train_loader = dog_train_loader, criterion = criterion, optimizer = optimizer, device = device, epochs = 10)
|
||||
torch.save(model.state_dict(), 'dog_cat_classifier.pth')
|
||||
torch.save(model.state_dict(), 'dog_cat_classifier.pth') # saves model to pth file
|
||||
print('done w train, model saved')
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue