ML-Workshop/train.py
2025-03-20 12:45:57 -04:00

52 lines
1.9 KiB
Python

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from consts import TRAIN_DATA
from tqdm import tqdm
from model import DogCatClassifier
from dogs_cats_ds import DogCatDataset
def train(model: nn.Module, train_loader: DataLoader, criterion, optimizer, device, epochs):
model.to(device)
model.train()
for epoch in tqdm(range(epochs)):
running_loss = 0.0
correct = 0
total = 0
for i, (img, lab) in enumerate(train_loader):
img, lab = img.to(device), lab.to(device).float().view(-1, 1)
optimizer.zero_grad()
out = model(img)
loss = criterion(out, lab)
loss.backward()
optimizer.step()
running_loss += loss.item()
pred = (out > 0.5).float()
total += lab.size(0)
correct += (pred == lab).sum().item()
if (i + 1) % 50:
print(f'yo its epoch {epoch + 1} out of {epochs} and we on minibatch {i + 1} / {len(train_loader)}. Loss lookin like: {running_loss/100:.4f}, acc lookin like {100 * correct / total :.2f}%')
running_loss = 0.0
total = 0
correct = 0
if __name__ == "__main__":
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f'Using device: {device}')
dog_train_dataset = DogCatDataset(TRAIN_DATA)
dog_train_loader = DataLoader(dog_train_dataset, batch_size = 32, shuffle = True) # since its train, ok to shuffle
model = DogCatClassifier()
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr = 0.001)
print(model)
train(model = model, train_loader = dog_train_loader, criterion = criterion, optimizer = optimizer, device = device, epochs = 10)
torch.save(model.state_dict(), 'dog_cat_classifier.pth')
print('done w train, model saved')