import torch.nn as nn class DogCatClassifier(nn.Module): def __init__ (self): super().__init__() self.conv1 = nn.Sequential( nn.Conv2d(3, 32, 3, padding = 1), nn.ReLU(inplace = True), nn.MaxPool2d(2), nn.BatchNorm2d(32) ) self.conv2 = nn.Sequential( nn.Conv2d(32, 64, 3, padding = 1), nn.ReLU(inplace = True), nn.MaxPool2d(2), nn.BatchNorm2d(64) ) self.conv3 = nn.Sequential( nn.Conv2d(64, 128, 3, padding = 1), nn.ReLU(inplace = True), nn.MaxPool2d(2), nn.BatchNorm2d(128) ) self.fc1 = nn.Linear(128 * 4 * 4 , 512)# 2048, lowkey had to calculator it lol self.dropout = 0.5 # tunable self.fc2 = nn.Linear(512, 1) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = x.view(x.size(0), -1) x = self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) x = nn.functional.sigmoid(x) return x