from pathlib import Path import torchvision import torchvision.transforms as transforms CIFAR_DIR = Path('Data/CIFAR10') CIFAR_DIR.mkdir(exist_ok = True) #you can add more and bump the numbers even more up normalize = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) TRAIN_DATA = torchvision.datasets.CIFAR10(root = CIFAR_DIR, train = True, transform = normalize, download = True) TEST_DATA = torchvision.datasets.CIFAR10(root = CIFAR_DIR, train = False, transform = normalize, download = True) CLASSES = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']